Rosetta Robotic News
May 31, 2012 20:29:54
Rosetta flyby uncovers the complex history of asteroid Lutetia
By Source: ESA

 The long and tumultuous history of asteroid (21) Lutetia is revealed by a comprehensive analysis of the data gathered by ESA's Rosetta spacecraft when it flew past this large main-belt asteroid on 10 July 2010. New studies have revealed the asteroid's surface morphology, composition and other properties in unprecedented detail. In particular, extensive studies of Lutetia's geological features have opened a unique window into the complex history of this peculiar object.

On its way to rendezvous with comet 67P/Churyumov-Gerasimenko, ESA's Rosetta spacecraft flew by the main-belt asteroid (21) Lutetia, reaching the closest approach, at a distance of about 3170 km, on 10 July 2010. From this unique vantage point, Rosetta gathered high-resolution images, spectra, and other data, providing scientists with a valuable dataset with which to probe this peculiar asteroid in great detail.

The first results from the flyby, published in late 2011, revealed the mass and volume of Lutetia, leading to an estimate of the asteroid's density, which turned out to be surprisingly high. Data from the flyby also suggested that Lutetia is a primordial planetesimal formed during the very early phases of the Solar System. These and other findings called for further investigations about the nature and history of Lutetia.

"The images collected by Rosetta during the flyby have uncovered, for the first time, the wide variety of craters and other geological features that scar the surface of Lutetia," notes Rita Schulz, Rosetta Project Scientist at ESA. "Scientists have explored this rich pool of data thoroughly in order to characterise many of Lutetia's properties, from its surface morphology and composition to its shape and internal structure, revealing its underlying geological history," she adds. The results of these studies are reported in a series of 21 papers published in a special issue of the journal Planetary and Space Science.

The OSIRIS camera on Rosetta has surveyed the part of Lutetia that was visible during the flyby – about half of its entire surface, mostly coinciding with the asteroid's northern hemisphere. These unique, close-up images have allowed scientists to identify regions characterised by very distinct geological properties with an accuracy of a few hundred metres.

Counting craters is a powerful tool that is used to compare the regions and to uncover their past history. By recording the number, spatial distribution, shapes and sizes of the hundreds of craters that mark the surface of each region, it is possible to date the epoch when these craters were produced by collisions with smaller bodies. In the case of the largest craters, it is even possible to reconstruct the details of the impact that created them.

By tracing craters and other features on Lutetia's surface, scientists have put together a geological map for the asteroid. Their studies have shown that Lutetia's surface comprises regions spanning a wide range of ages: each of them reveals a chapter in the long and tumultuous history of this asteroid.

At one end of this age spectrum, the two heavily cratered Achaia and Noricum regions represent the most ancient portions on the surface of Lutetia: with ages between 3.4 and 3.7 billion years or more, they are almost as old as the asteroid itself. Some of the craters that densely populate these two regions date back to an early epoch in the Solar System's history, right after the so-called Late Heavy Bombardment, when the flux of bodies impacting asteroids, planets and their satellites was significantly larger than it is at present.

Massilia, the largest crater identified on the asteroid, is located in a younger region named Narbonensis. With a diameter of 57 km, this crater provides evidence of the most dramatic event in the history of Lutetia: numerical simulations suggest that the 'projectile' responsible for producing this very wide crater was quite large, with a diameter of about 7.5 km. However, the probability of such a large body colliding with the asteroid is quite low, and so this must have occurred when Lutetia was relatively young.

The youngest patch on the surface of Lutetia is the Baetica region, located in the vicinity of the asteroid's North Pole. This region hosts a number of superimposed craters, named the North Polar Crater Cluster (NPCC), which include three large ones with sizes exceeding 10 km. These craters represent the signature left by a series of subsequent impacts that took place quite recently on geological timescales – namely, in the last few hundred million years.

The smooth appearance of the craters in Baetica, which have not been dotted yet with many smaller craters, indicate that its surface is much younger than the heavily battered areas of Lutetia. Furthermore, this region still bears signs of the events that created the NPCC, as indicated by the ejecta that were released during the impacts and then spread on the surrounding area, rather than leaving the asteroid's surface, as a result of its relatively strong gravitational pull. The presence of these 'fresh' deposits, which include many large boulders with sizes up to 300 metres, is another hint at this region's young age. 

In addition to craters, other geological markers, such as lineaments and faults, represent an important window into the turbulent past of asteroids and other Solar System bodies. The remarkable images collected by OSIRIS during the flyby have revealed an intricate network of linear features covering long distances across Lutetia's surface, up to 80 km in some cases. Many of these features are the results of seismic phenomena that also caused deformations on pre-existing craters. Lineaments and faults have been mostly detected in the oldest portions of Lutetia's surface. In contrast, a lack of such features in the young region near the North Pole  suggests that the recent impacts that gave rise to the NPCC did not cause significant fractures on the surface of the asteroid.

Prior to the flyby, one of the most puzzling aspects of Lutetia was its surface composition: different datasets have hinted at either a metallic or a chondritic composition, thus making the classification of this asteroid particularly problematic. Scientists have now addressed the issue by combining data gathered with four remote-sensing instruments on Rosetta – OSIRIS, VIRTIS, MIRO, and ALICE – which cover visible, infrared, microwave and ultraviolet wavelengths. The new data show that Lutetia has an unusual surface composition that does not fit into the schemes established before the flyby and may result from the complex collision history of the asteroid.

The peculiar composition of Lutetia, when considered along with its high density, raises the possibility that this asteroid might have a partially differentiated structure, with a metallic core overlain by a primitive chondritic crust. The only other differentiated asteroid that has been visited by a spacecraft is Vesta, one of the largest asteroids in the Solar System and significantly larger than Lutetia. Whereas it is reasonable to expect such an internal structure in asteroids as large as Vesta, it is still unclear whether this should be the case also for objects of Lutetia's size. Therefore the possible evidence of a differentiated structure suggested by the new data is particularly intriguing.

The flyby of Lutetia also provided a rare opportunity to obtain 'in situ' measurements of the surrounding environment of the asteroid, allowing scientists to search for an exosphere, an internal magnetic field or satellites. All three searches did not find significant evidence for any of these possibilities, and could only set upper limits.

"The data collected during Rosetta's flyby of Lutetia have provided us with a brand new view on this intriguing object," comments Schulz. "I expect that scientists will continue to investigate these unique and extraordinary data for years to come, pushing forward our knowledge about this asteroid and its origin, and revealing new details about the Solar System's past history," she adds.

In the meantime, Rosetta proceeds towards its final destination, comet 67P/Churyumov-Gerasimenko, which will be reached in 2014. "We are eagerly awaiting the next and probably most exciting phase of the mission," concludes Schulz.

Related publication
Rosetta Fly-by at Asteroid (21) Lutetia. Special issue of Planetary and Space Science, Volume 66, Issue 1, Pages 1-212 (June 2012)

Notes for editors

On its 10-year journey towards comet 67P/Churyumov-Gerasimenko, ESA's Rosetta spacecraft has flown past two main-belt asteroids: (2867) Steins in 2008, and (21) Lutetia in 2010. The flyby of Lutetia took place on 10 July 2010, when Rosetta flew past the asteroid at a distance of 3168.2 km and at a relative speed of 15 km/s.

Most of the scientific instruments on Rosetta were switched on as the spacecraft approached the rotating asteroid, resulting in imaging and spectral observations covering a spectral range from ultraviolet to microwave radiation, and a number of in-situ measurements of the asteroid's environment.

The Optical, Spectroscopic and Infrared Remote Imaging System (OSIRIS) returned 462 pictures of the illuminated northern hemisphere of Lutetia through both its narrow-angle camera (NAC) and wide-angle camera (WAC). These images cover more than 50 per cent of the asteroid's surface and were instrumental in revealing its surface in unprecedented detail.

The ALICE, VIRTIS and MIRO instruments were used to gather spectra at ultraviolet, infrared and microwave wavelengths, respectively, in order to probe the chemical composition of Lutetia's surface.

In-situ searches for an exosphere were conducted with the ROSINA instrument; spectra from the COSAC/Philae, Ptolemy/Philae and ALICE instruments were also used to search for the asteroid's exosphere. Magnetic field measurements were performed with the ROMAP, RPC-MAG/OB and RPC-MAG/IB sensors.

As ESA's Rosetta spacecraft flew past the main-belt asteroid (21) Lutetia, the OSIRIS camera on Rosetta surveyed the part of Lutetia that was visible during this period – about half of its entire surface, mostly coinciding with the asteroid's northern hemisphere. The asteroid's North Pole is indicated with a black dot.

The unique, close-up images obtained by OSIRIS have allowed scientists to identify regions characterised by very distinct geological properties with an accuracy of a few hundred metres. By tracing craters and other features on Lutetia's surface, scientists have put together a geological map for the asteroid. Their studies have shown that Lutetia's surface comprises regions spanning a wide range of ages: each of them reveals a chapter in the long and tumultuous history of this asteroid.

The most ancient portions on the surface of Lutetia are the heavily cratered Achaia and Noricum regions, shown in red and yellow in the upper and lower part of the image, respectively. With ages between 3.4 and 3.7 billion years or more, these two regions are almost as old as the asteroid itself.

Massilia, the largest crater identified on the asteroid, is located in a younger region named Narbonensis. This region is shown in blue on the right side of the image: the depression due to the large crater is clearly visible. With a diameter of 57 km, Massilia provides evidence of the most dramatic event in the history of Lutetia.

The youngest patch on the surface of Lutetia is the Baetica region, located in the vicinity of the asteroid's North Pole and shown in green at the centre of the image. This region hosts a number of superimposed craters, named the North Polar Crater Cluster (NPCC), which include three large ones with sizes exceeding 10 km. These craters represent the signature left by a series of subsequent impacts that took place quite recently on geological timescales – namely, in the last few hundred million years. Credit: ESA

 


 

 

More Interactive Photography
Gale Crator InterActive First look crisp look around Gale Crator This 360-degree, full-resolution panorama from NASA's Curiosity rover shows the area all around...
Endeavour nose gear in OPF InterActive Endeavour nose gear in OPF This was shot from forward and underneath Space Shuttle Endeavour in the Orbiter Processing...
Endeavor engine compartment InterActive Endeavor engine compartment View into the Space Shuttle's engine compartment with the three main engines removed.
Endeavor engine compartment InterActive Endeavor engine compartment View into the Space Shuttle's engine compartment with the three main engines removed.
Endeavour Cargo Bay InterActive Endeavour Cargo Bay This image was shot from the forward end of Space Shuttle Endeavour's cargo ba as it sits in...
Interior view of the Space Shuttle Endeavour forward flight deck. InterActive Interior view of the Space Shuttle Endeavour forward flight deck. Interior view of the Space Shuttle Endeavour aft flight deck.
Endeavour Forward Flight Deck InterActive Endeavour Forward Flight Deck Interior view of the Space Shuttle Endeavour forward flight deck.
Atlas V with Mars Science Laboratory payload InterActive Atlas V with Mars Science Laboratory payload The rover Curiosity will carry the biggest, most advanced suite of instruments for scientific...
Curiosity rover InterActive Curiosity rover NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or...
Curiosity rover InterActive Curiosity rover NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or...
Gravity Recovery and Interior Laboratory InterActive GRAIL The Gravity Recovery and Interior Laboratory mission's primary science objectives will be to...
Atlas V AV-029 InterActive Atlas V AV-029 ULA Atlas V number AV-029 reaches launch pad on August 4th, 2011. In less than 1 day this Atlas...
Atlas V up close InterActive Atlas V up close Get to know the Atlas V up close. Explore the rivets in this 74.62 megapixel image of the Atlas...
JUNO Atlas V InterActive JUNO Atlas V ULA Atlas V with the JUNO probe sitting atop at Cape Canaveral Air Force Station is ready for...
Atlantis at wheels stop on runway 15 InterActive Atlantis on runway Space Shuttle Atlantis returned to Earth in the predawn hours of July 21st, 2011. Marking the...
Atlantis at wheels stop on runway 15 InterActive Atlantis at wheels stop on runway 15 Space Shuttle Atlantis returned to Earth in the predawn hours of July 21st, 2011. Marking the...
Atlantis and tower InterActive Atlantis and tower Space shuttle Atlantis waits to receive payload for the final space shuttle mission STS-135,...
Atlantis payload preparations InterActive Atlantis payload preparations Space shuttle Atlantis at pad 39A. The payload canister can be seen lifted in to position to...
Walk with the astronauts InterActive Walk with the astronauts A view of the 195ft level of the fixed service structure. This where the astronauts arrive at...
Last Space Shuttle prepares for launch InterActive Last Space Shuttle prepares for launch A close in look at space shuttle Atlantis on June 17th. Launch preparations are on going for...
The last space shuttle to be on the launch pad InterActive The last space shuttle to be on the launch pad Space shuttle Atlantis, the last space shuttle to flight begins launch prepartions at pad 39A...
Last space shuttle arrives at launch pad InterActive Last space shuttle arrives at launch pad Space shuttle Atlantis is seen here from the top of the rotating service structure the moring...
The last space shuttle has left the building InterActive The last space shuttle has left the building Space shuttle Atlantis rolls out of the Vehicle Assembly Building for the last time on the...
Space Shuttle Atlantis prepared to rollout to pad   InterActive Space Shuttle Atlantis prepared to rollout to pad Space shuttle Atlantis complete with the solid rocket boosters and external tank that will...
HiRes Atlantis hanging in VAB InterActive HiRes Atlantis hanging in VAB HiRes image of Space Shuttle Atlantis hanging in the Vehical Assembly Building. This shot was...
Atlantis vertical from VAB Level 5 InterActive Atlantis vertical from VAB Level 5 Space Shuttle Atlantis after being lifted into the verticle position before being mated to the...
Atlantis vertical InterActive Atlantis vertical Space Shuttle Atlantis hangs vertical before removing the rear hoist and lifting it for the...
Atlantis rolling vertical InterActive Atlantis rolling vertical Here Space Shuttle Atlantis is almost vertical being positioned to soon be mated to the...
Atlantis hanging in VAB InterActive Atlantis hanging in VAB Space Shuttle Atlantis is seen here hanging about 10 feet above the VAB floor. It has justed...
Endeavour at night InterActive Endeavour at night Space shuttle Endeavour seen here at night as launch preparation continue for the first launch...
Atlantis rolling over to VAB for final mission InterActive Atlantis rolling over to VAB for final mission Space Shuttle Atlantis rolling over the VAB for the last time. Atlantis is scheduled to be the...
Atlantis outside VAB for employee photos InterActive Atlantis outside VAB for employee photos Space shuttle Atlantis, the last space shuttle, pauses during rollover from the OPF to the VAB...
Hi Resolution image of the last space shuttle InterActive Hi Resolution image of the last space shuttle Hi Resolution composit image of the last space shuttle, Atlantis, as it sits atop the transport...
Atlantis in the VAB InterActive Atlantis in the VAB Nice 360 degree view of the VAB with Atlantis being preped for the Lift and Mate procedure
Atlantis on the sled in VAB InterActive Atlantis on the sled in VAB Explore the VAB with Space Shuttle Atlantis on the sled after rollover to the VAB jst before...
Atlantis being attached to sling InterActive Atlantis being attached to sling Full 360 degree panorama from inside the VAB as Space Shuttle Atlantis is attached to the sling...
Endeavour after RSS retraction InterActive Endeavour after RSS retraction Hi-Res image of Space Shuttle Endeavour on the launch pad 39A minutes after the RSS was...
The Mound STS-134 4/29 Attempt InterActive The Mound STS-134 4/29 Attempt This a 360 degree panorama from the mound of the KSC media center. This was the scence about an...
Alpha Magnetic Spectrometer (AMS) InterActive Alpha Magnetic Spectrometer (AMS) The Alpha Magnetic Spectrometer-2, a particle physics detector designed to search for various...
AMS in the SSPF InterActive AMS in the SSPF The Alpha Magnetic Spectrometer-2, a particle physics detector designed to search for various...
Here is Space Shuttle Endeavour just after sunrise InterActive Here is Space Shuttle Endeavour just after sunrise Here is Space Shuttle Endeavour just after sunrise the morning it arrived from the VAB. How...
Endeavour in the VAB InterActive Endeavour in the VAB Space Shuttle Endeavour sitting stacked and ready atop the crawler to rollout the launch pad.
Endeavour in the VAB InterActive Endeavour in the VAB Space Shuttle Endeavour sitting stacked and ready atop the crawler to rollout the launch pad.
Space Shuttle Discovery final towover InterActive Space Shuttle Discovery final towover View of Space Shuttle Discovery 4 hours after returning to Earth for the last time. Discovery...
Space Shuttle Discovery Final Launch InterActive Space Shuttle Discovery Final Launch This a 360 degree panorama taken 3 mile from the launch pad capturing the final lift off of...
Space shuttle Discovery final launch InterActive Space shuttle Discovery final launch This a 360 degree panorama taken 3 mile from the launch pad capturing the final lift off of...
Discovery at Night InterActive Discovery at Night This a panorama of Space Shuttle Discovery shortly after RSS retraction on 11/3/2010 preparing...
GRIP DC-8 Panorama InterActive GRIP DC-8 Panorama Interior of forward section of NASA GRIP aircraft while configured for studding hurricane...
GRIP DC-8 Interior InterActive GRIP DC-8 Interior Interior of forward section of NASA GRIP aircraft while configured for studding hurricane...
NASA GRIP DC-8 InterActive NASA GRIP DC-8 The NASA DC-8 is a four-engine jet transport that has been highly modified to support the...
Endeavour on pad InterActive Endeavour ready for launch HiRes image of Endeavour at Pad 39A
AMS-2 Antimatter Telescope InterActive AMS-2 Antimatter Telescope Explore the SSPF and ESA's Antimatter Telescope. 360 rotating,zoomable Panorama!
Spectacular ultra hi-rez interactive shot of the Space Shuttle Endeavour on the launch pad for the last time InterActive Explore LC-39A !! Spectacular ultra hi-rez interactive shot of the Space Shuttle Endeavour on the launch pad for...